『Deep Learning with PyTorch』のカバーアート

Deep Learning with PyTorch

Build, Train, and Tune Neural Networks Using Python Tools

プレビューの再生

聴き放題対象外タイトルです。Audible会員登録で、非会員価格の30%OFFで購入できます。

¥2,170で会員登録し購入
無料体験で、20万以上の対象作品が聴き放題に
アプリならオフライン再生可能
プロの声優や俳優の朗読も楽しめる
Audibleでしか聴けない本やポッドキャストも多数
無料体験終了後は月額¥1,500。いつでも退会できます。

Deep Learning with PyTorch

著者: Eli Stevens, Luca Antiga, Thomas Viehmann
ナレーター: Mark Thomas
¥2,170で会員登録し購入

無料体験終了後は月額¥1,500。いつでも退会できます。

¥3,100 で購入

¥3,100 で購入

注文を確定する
下4桁がのクレジットカードで支払う
ボタンを押すと、Audibleの利用規約およびAmazonのプライバシー規約同意したものとみなされます。支払方法および返品等についてはこちら
キャンセル

このコンテンツについて

There are countless ways to put deep learning to good use: improved medical imaging, credit card fraud detection, long range weather forecasting. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you - and your deep-learning skills - become more sophisticated.

This book will make that journey engaging and fun.

About the technology

Although many deep learning tools use Python, the PyTorch library is truly Pythonic. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It's excellent for building quick models, and it scales smoothly from laptop to enterprise. Because companies like Apple, Facebook, and JPMorgan Chase rely on PyTorch, it's a great skill to have as you expand your career options.

About the book

Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results.

After covering the basics, the book will take you on a journey through larger projects.

What's inside

  • Training deep neural networks
  • Implementing modules and loss functions
  • Utilizing pretrained models from PyTorch Hub
  • Exploring code samples in Jupyter Notebooks

About the audience

For Python programmers with an interest in machine learning

About the authors

Eli Stevens had roles from software engineer to CTO and is currently working on machine learning in the self-driving-car industry. Luca Antiga is cofounder of an AI engineering company as well as a former PyTorch contributor. Thomas Viehmann is a PyTorch core developer and machine learning trainer and consultant.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2020 Manning Publications (P)2021 Manning Publications
ソフトウェア開発 プログラミング プログラミング言語

Deep Learning with PyTorchに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。