• #117 Unveiling the Power of Bayesian Experimental Design, with Desi Ivanova

  • 2024/10/15
  • 再生時間: 1 時間 13 分
  • ポッドキャスト

#117 Unveiling the Power of Bayesian Experimental Design, with Desi Ivanova

  • サマリー

  • Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

    • My Intuitive Bayes Online Courses
    • 1:1 Mentorship with me

    Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

    Visit our Patreon page to unlock exclusive Bayesian swag ;)

    Takeaways:

    • Designing experiments is about optimal data gathering.
    • The optimal design maximizes the amount of information.
    • The best experiment reduces uncertainty the most.
    • Computational challenges limit the feasibility of BED in practice.
    • Amortized Bayesian inference can speed up computations.
    • A good underlying model is crucial for effective BED.
    • Adaptive experiments are more complex than static ones.
    • The future of BED is promising with advancements in AI.

    Chapters:

    00:00 Introduction to Bayesian Experimental Design

    07:51 Understanding Bayesian Experimental Design

    19:58 Computational Challenges in Bayesian Experimental Design

    28:47 Innovations in Bayesian Experimental Design

    40:43 Practical Applications of Bayesian Experimental Design

    52:12 Future of Bayesian Experimental Design

    01:01:17 Real-World Applications and Impact

    Thank you to my Patrons for making this episode possible!

    Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov,...

    続きを読む 一部表示

あらすじ・解説

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

  • My Intuitive Bayes Online Courses
  • 1:1 Mentorship with me

Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Designing experiments is about optimal data gathering.
  • The optimal design maximizes the amount of information.
  • The best experiment reduces uncertainty the most.
  • Computational challenges limit the feasibility of BED in practice.
  • Amortized Bayesian inference can speed up computations.
  • A good underlying model is crucial for effective BED.
  • Adaptive experiments are more complex than static ones.
  • The future of BED is promising with advancements in AI.

Chapters:

00:00 Introduction to Bayesian Experimental Design

07:51 Understanding Bayesian Experimental Design

19:58 Computational Challenges in Bayesian Experimental Design

28:47 Innovations in Bayesian Experimental Design

40:43 Practical Applications of Bayesian Experimental Design

52:12 Future of Bayesian Experimental Design

01:01:17 Real-World Applications and Impact

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov,...

#117 Unveiling the Power of Bayesian Experimental Design, with Desi Ivanovaに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。