
E54: Why AI Masters Shakespeare but Fails at Simple Math
カートのアイテムが多すぎます
ご購入は五十タイトルがカートに入っている場合のみです。
カートに追加できませんでした。
しばらく経ってから再度お試しください。
ウィッシュリストに追加できませんでした。
しばらく経ってから再度お試しください。
ほしい物リストの削除に失敗しました。
しばらく経ってから再度お試しください。
ポッドキャストのフォローに失敗しました
ポッドキャストのフォロー解除に失敗しました
-
ナレーター:
-
著者:
このコンテンツについて
In this episode of HD/Cast, we delve into the surprising challenges that advanced AI models face with basic grade-school math. Despite their prowess in complex tasks like writing sonnets and real-time translations, these models often stumble over simple word problems. A recent study from Apple reveals why: AI models excel at pattern matching but struggle with true logical reasoning. We explore the GSM-Symbolic benchmark and the profound limitations it exposes, discussing why AI falls short when faced with varied and unexpected math challenges. Join us as we uncover what this means for the future of AI reasoning. Source: GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models