• New Model to Study Macrophage Aging Mechanisms

  • 2024/10/24
  • 再生時間: 3 分
  • ポッドキャスト

New Model to Study Macrophage Aging Mechanisms

  • サマリー

  • BUFFALO, NY- October 24, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 19 on October 3, 2024, entitled “A new model and precious tool to study molecular mechanisms of macrophage aging.” As highlighted in the abstract, the accumulation of senescent cells, marked by a senescence-associated secretory phenotype (SASP), plays a role in chronic inflammation and age-related diseases (ARD). During aging, macrophages can develop a senescent-like phenotype with altered functions, promoting the buildup of senescent cells. In the context of aging and ARD, controlling the resolution of inflammation and preventing chronic inflammation—particularly by targeting macrophages—should be a priority. In their paper, researchers Rémy Smith, Kévin Bassand, Ashok Dussol, Christophe Piesse, Eric Duplus, and Khadija El Hadri from Sorbonne Université in Paris and Université Sorbonne Paris Nord in Bobigny, France, developed an in vitro model of murine peritoneal macrophage aging. Using this model, they demonstrated that chronic treatment with CB3, a thioredoxin-1 mimetic anti-inflammatory peptide, completely prevents the increase of p21CIP1 and allows day 14 macrophages to maintain their proliferative activity. "We describe a new model of macrophage aging with a senescence-like phenotype associated with inflammatory, metabolic and functional perturbations.” DOI - https://doi.org/10.18632/aging.206124 Corresponding authors - Eric Duplus - eric.duplus@sorbonne-universite.fr, and Khadija El Hadri - khadija.zegouagh@sorbonne-universite.fr Video short - https://www.youtube.com/watch?v=LfN78LR-CYU Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206124 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, macrophage, inflammation, senescence, thioredoxin-1 mimetic peptide About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    続きを読む 一部表示

あらすじ・解説

BUFFALO, NY- October 24, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 19 on October 3, 2024, entitled “A new model and precious tool to study molecular mechanisms of macrophage aging.” As highlighted in the abstract, the accumulation of senescent cells, marked by a senescence-associated secretory phenotype (SASP), plays a role in chronic inflammation and age-related diseases (ARD). During aging, macrophages can develop a senescent-like phenotype with altered functions, promoting the buildup of senescent cells. In the context of aging and ARD, controlling the resolution of inflammation and preventing chronic inflammation—particularly by targeting macrophages—should be a priority. In their paper, researchers Rémy Smith, Kévin Bassand, Ashok Dussol, Christophe Piesse, Eric Duplus, and Khadija El Hadri from Sorbonne Université in Paris and Université Sorbonne Paris Nord in Bobigny, France, developed an in vitro model of murine peritoneal macrophage aging. Using this model, they demonstrated that chronic treatment with CB3, a thioredoxin-1 mimetic anti-inflammatory peptide, completely prevents the increase of p21CIP1 and allows day 14 macrophages to maintain their proliferative activity. "We describe a new model of macrophage aging with a senescence-like phenotype associated with inflammatory, metabolic and functional perturbations.” DOI - https://doi.org/10.18632/aging.206124 Corresponding authors - Eric Duplus - eric.duplus@sorbonne-universite.fr, and Khadija El Hadri - khadija.zegouagh@sorbonne-universite.fr Video short - https://www.youtube.com/watch?v=LfN78LR-CYU Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206124 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, macrophage, inflammation, senescence, thioredoxin-1 mimetic peptide About Aging-US The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population. The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.) Please visit our website at https://www.Aging-US.com​​ and connect with us: Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM

New Model to Study Macrophage Aging Mechanismsに寄せられたリスナーの声

カスタマーレビュー:以下のタブを選択することで、他のサイトのレビューをご覧になれます。