• #258: Goals, KPIs, and Targets, Oh My! with Tim Wilson
    2024/11/12

    KPIs? Really? It’s 2024. Can’t we just ask Claude to generate those for us? We say… no. There are lots and lots of things that AI can take on or streamline, but getting meaningful, outcome-oriented alignment within a set of business partners as they plan a campaign, project, or initiative isn’t one of them! Or, at least, we’re pretty sure that’s what our special guest for this episode would say. He’s been thinking about (and ranting about) organizations’ failure to take goal establishment, KPI identification, and target-setting seriously enough for years (we found a post he wrote in 2009 on the subject!). He also really helped us earn our explicit tag for this episode — scatologically and onanistically, we’re afraid. But solid content nonetheless, so hopefully you can hear past that! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    1 時間 6 分
  • #257: Analyst Use Cases for Generative AI
    2024/10/29

    udging by the number of inbound pitches we get from PR firms, AI is absolutely going to replace most of the work of the analyst some time in the next few weeks. It’s just a matter of time until some startup gets enough market traction to make that happen (business tip: niche podcasts are likely not a productive path to market dominance, no matter what Claude from Marketing says). We’re skeptical. But that doesn’t mean we don’t think there are a lot of useful applications of generative AI for the analyst. We do! As Moe posited in this episode, one useful analogy is that thinking of using generative AI effectively is like getting a marketer effectively using MMM when they’ve been living in an MTA world (it’s more nuanced and complicated). Our guest (NOT from a PR firm solicitation!), Martin Broadhurst, agreed: it’s dicey to fully embrace generative AI without some understanding of what it’s actually doing. Things got a little spicy, but no humans or AI were harmed in the making of the episode.

    For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    1 時間 6 分
  • #256: Live at MeasureCamp Chicago
    2024/10/15

    For the first time since they've been a party of five, all of the Analytics Power Hour co-hosts assembled in the same location. That location? The Windy City. The occasion? Chicago's first ever MeasureCamp! The crew was busy throughout the day inviting attendees to "hop on the mic" with them to answer various questions. We covered everything from favorite interview questions to tips and tricks, with some #hottake questions thrown in for fun. During the happy hour at the end of the day, we also recorded a brief live show, which highlighted some of the hosts' favorite moments from the day. Listen carefully and you'll catch an audio cameo from Tim's wife, Julie! And keep an eye on the MeasureCamp website to find the coolest way to spend a nerdy Saturday near you (Bratislava, Sydney, Dubai, Stockholm, Brussels, and Istanbul are all coming up before the end of the year!). For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    1 時間 27 分
  • #255: Dear APH-y: Career Inflection Points
    2024/10/01

    To data analyst, or to data science? To individually contribute, or to manage the individual contributions of others? To mid-career pivot into analytics, or to… oh, hell yes! That last one isn’t really a choice, is it? At least, not for listeners who are drawn to this podcast. And this episode is a show that can be directly attributed to listeners. As we gathered feedback in our recent listener survey, we asked for topic suggestions, and a neat little set of those suggestions were all centered around career development. And thus, a show was born! All five co-hosts—Julie, Michael, Moe, Tim, and Val—hopped on the mic to collaborate on some answers in this episode. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    59 分
  • #254: Is Your Use of Benchmarks Above Average? with Eric Sandosham
    2024/09/17

    It's human nature to want to compare yourself or your organization against your competition, but how valuable are benchmarks to your business strategy? Benchmarks can be dangerous. You can rarely put your hands on all the background and context since, by definition, benchmark data is external to your organization. And you can also argue that benchmarks are a lazy way to evaluate performance, or at least some co-hosts on this episode feel that way! Eric Sandosham, founder and partner at Red & White Consulting Partners (and prolific writer), along with Moe, Tim, and Val break down the problems with benchmarking and offer some alternatives to consider when you get the itch to reach for one! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    1 時間 5 分
  • #253: Adopting a Just In Time, Just Enough Data Mindset with Matt Gershoff
    2024/09/03

    While we don’t often call it out explicitly, the driving force behind much of what and how much data we collect is driven by a "just in case" mentality: we don't know exactly HOW that next piece of data will be put to use, but we better collect it to minimize the potential for future regret about NOT collecting it. Data collection is an optionality play—we strive to capture "all the data" so that we have as many potential options as possible for how it gets crunched somewhere down the road. On this episode, we explored the many ways this deeply ingrained and longstanding mindset is problematic, and we were joined by the inimitable Matt Gershoff from Conductrics for the discussion! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    1 時間 8 分
  • #252: The Ever-Shifting Operating Environment of the Data Professional
    2024/08/20

    Broadly writ, we’re all in the business of data work in some form, right? It’s almost like we’re all swimming around in a big data lake, and our peers are swimming around it, too, and so are our business partners. There might be some HiPPOs and some SLOTHs splashing around in the shallow end, and the contours of the lake keep changing. Is lifeguarding…or writing SQL…or prompt engineering to get AI to write SQL…or identifying business problems a job or a skill? Does it matter? Aren’t we all just trying to get to the Insights Water Slide? Katie Bauer, Head of Data at Gloss Genius and thought-provoker at Wrong But Useful, joined Michael, Julie, and Val for a much less metaphorically tortured exploration of the ever-shifting landscape in which the modern data professional operates. Or swims. Or sinks? For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    52 分
  • #251: The Continued Rise of the Analytics Engineer with Dumky de Wilde
    2024/08/06

    We're seeing the title "Analytics Engineer" continue to rise, and it’s in large part due to individuals realizing that there's a name for the type of work they've found themselves doing more and more. In today's landscape, there's truly a need for someone with some Data Engineering chops with an eye towards business use cases. We were fortunate to have the one of the co-authors of The Fundamentals of Analytics Engineering, Dumky de Wilde, join us to discuss the ins and outs of this popular role! Listen in to hear more about the skills and responsibilities of this role, some fun analogies to help explain to your grandma what AE's do, and even tips for individuals in this role for how they can communicate the value and impact of their work to senior leadership! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

    続きを読む 一部表示
    1 時間 1 分